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In systems where diffusing particles are subject to a reactive process,
diffusion and reaction are coupled and reaction-diffusion (R-D) phenomena
are described at the macroscopic level by R-D equations. For instance, for
an anihilation process such as A→ 0, the classical R-D equation reads
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where D denotes the diffusion coefficient and k the reactive rate. The classical
equation (1) yields a steady state solution showing exponential decay in space
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However in most natural systems where it seems logical to use the lan-
guage of reaction-diffusion, non-classical distributions are observed where
the steady state shows non-exponential behavior e.g. when the particles en-
counter obstacles in the medium or because the reactive process is hindered
or enhanced by concentration effects. So a general description of R-D phe-
nomena requires a generalization for both diffusion and reaction.

We develop a microscopic approach by generalizing Einstein’s master
equation with a reactive term and we show how the mean field formula-
tion leads to nonlinear R-D equations with non-classical solutions. For the
n-th order annihilation reaction A + A + A + ... + A → 0, the generalized
reaction-diffusion equation (with no drift) reads
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giving typical solutions f(r) = f(0) (1 + Cα,n (D, k) r)
−2
n−α with long range

power law behavior showing the relative dominance of sub-diffusion over
reaction effects or conversely leading to finite support because diffusion is
slow and extinction is fast. Examples of morphogen gradient formation in
biological systems are discussed.1
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