Pattern recognition by covariogram

V. K. Ohanyan

American University of Armenia, Yerevan, Armenia E-mail: victo@aua.am

Let D be a convex body in n-dimensional Euclidean space \mathbb{R}^n , that is a compact, convex subset of \mathbb{R}^n , with non-empty interior. The n-dimensional Lebesgue measure in \mathbb{R}^n is denoted by $L_n(\cdot)$. If $h \in \mathbb{R}^n$, then D+h denotes the translate of D by h. The covariogram of a convex body $D \subset \mathbb{R}^n$ is the following function $C(D,h) = L_n(D \cap (D+h))$. G. Matheron conjectured that a planar convex body is uniquely determined by its covariogram, up to translation and reflection. Bianchi (see [2]) found counterexamples to the covariogram conjecture in dimensions greater than or equal to 4, and a positive answer for three-dimensional polytopes. The general three-dimensional case is still open. Denote by $F_D(u,x)$ orientation-dependent chord length distribution function. Determination of a convex body D by these distributions, for all directions, is equivalent to the determination by its covariogram. Matheron (see [2]) obtained relationship between $F_D(u,x)$ and covariogram. The applications in both geometric and computer tomography are well known (see [1]). In the paper [3] is proved that for any finite subset A of directions, there are two non-congruent domains for which orientation-dependent chord length distribution functions coincide for any direction from A (see also [4]).

References

- [1] Gardner R. J. Geometric Tomography, Cambridge University Press, Cambridge, UK, 2nd ed., 2006.
- [2] Bianchi G., "Matheron's conjecture for the covariogram problem" *J. London Math. Soc.*, (2), 71, 203-220, 2005.
- [3] Gasparyan A. G. and Ohanyan V. K., "Recognition of triangles by covariogram", Journal of Contemporary Mathematical Analysis (Armenian Academy of sciences), 48 (3), 2013.
- [4] Ohanyan V. K. and Aharonyan N. G., "Tomography of bounded convex domains", SUTRA: International Journal of Mathematical Science, 2 (1), 1-12, 2009.