Pattern recognition by covariogram
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Let D be a convex body in n-dimensional Euclidean space R™, that is a compact,
convex subset of R™, with non-empty interior. The n-dimensional Lebesgue
measure in R" is denoted by L, (-). If h € R", then D + h denotes the trans-
late of D by h. The covariogram of a convex body D C R"™ is the following
function C(D,h) = L,(D N (D + h)). G. Matheron conjectured that a pla-
nar convex body is uniquely determined by its covariogram, up to translation
and reflection. Bianchi (see [2]) found counterexamples to the covariogram con-
jecture in dimensions greater than or equal to 4, and a positive answer for
three-dimensional polytopes. The general three-dimensional case is still open.
Denote by Fp(u,x) orientation-dependent chord length distribution function.
Determination of a convex body D by these distributions, for all directions, is
equivalent to the determination by its covariogram. Matheron (see [2]) obtained
relationship between Fpp(u,z) and covariogram. The applications in both geo-
metric and computer tomography are well known (see [1]). In the paper [3] is
proved that for any finite subset A of directions, there are two non-congruent
domains for which orientation-dependent chord length distribution functions
coincide for any direction from A (see also [4]).
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